Jul 18, 2023
 in 

Können Netzrückwirkungen Schutzeinrichtungen stören?

Youtube
H

ERZlich Willkommen liebe Freunde der Schutz-, Leit- und Elektrotechnik. Können Netzrückwirkungen Schutzeinrichtungen stören? In unserem heutigen Beitrag von Jürgen Blum (A. Eberle GmbH & Co. KG) zeigen wir Euch, zu was Supraharmonische in der Lage sind, wie die praktische Analyse von Supraharmonischen aussieht, warum sowas überhaupt möglich ist und wie das Problem gelöst werden kann.

Achtung, bevor wir starten noch ein wertvoller Hinweis:

Am 26. Juli startet um 11.00 Uhr ein kostenloses Webinar mit dem Thema: "Netzanalyse in industriellen Energienetzen: Erfahrungswerte, Anwendungsbeispiele & zukünftige Entwicklung" der A. Eberle GmbH & Co. KG, welches ebenfalls von Jürgen Blum durchgeführt wird. Dieses kostenlose Webinar solltet Ihr Euch auf keinen Fall entgehen lassen. Bitte registriert Euch am besten gleich unter diesem Link.

HERZliche Grüsse,

Euer SCHUTZTECHNIK-TEAM

Netzrückwirkung Vollspektrum

Einleitung

In einem Foto- und Designstudio, angesiedelt in einem großen Industriepark, löste ein Fehlerstrom-Schutzschalter (RCD) sehr häufig aus. Aufgrund der permanenten Stromausfälle konnte diese Firma an vielen Tagen pro Monat nicht vernünftig arbeiten. Es bedurfte einer schnellen Lösung des Problems, aber selbst die Betriebselektriker konnten den Fehler nicht finden. Das gelang erst mit einer vertiefenden Netzanalyse.

Eine Elektrofirma wurde beauftragt, den Fehler in diesem Fotostudio, im 1. OG eines mehrstöckigen Gebäudes, zu lokalisieren. Der häufigste Fehler für das Auslösen eines RCD ist eine fehlerhafte Kontaktstelle zwischen einem Neutralleiter und Erde oder ein Isolationsfehler mit einem Fehlerstrom Leiter gegen Erde hinter dem RCD.

Lösungssuche

Folgende Arbeiten wurden nun vom Betriebselektriker durchgeführt:

🌐 Abklemmen aller Verbraucher und Durchführung einer Isolationsprüfung aller Leitungen hinter dem RCD.

🌐 Durchführung einer VDE 0701-0702 Prüfung aller angeschlossenen Geräte in diesem Fotostudio.

Die Isolationsmessung mit 500 V DC wurde vom Schutzleiter (PE) gegen Neutralleiter (N) und dann Schutzleiter gegen alle Außenleiter (L1, L2, L3) durchgeführt. In allen Fällen war der Isolationswiderstand aller Leitungen > 1 MΩ und somit in Ordnung. Auch die Isolationsprüfung aller Geräte zeigte keinen Isolationsfehler, womit diese als Verursacher für das Auslösen des RCDs ausgeschlossen werden konnten. Es wurden dann alle Sicherungsautomaten in der Verteilung im Fotostudio ausgeschaltet. Diese sollten nun jeweils einzeln eingeschaltet werden, um den Abgang zu finden, auf dem der RCD ausgelöst wird. Für eine erste schnelle Lösung könnte man so den Sicherungsautomat mit dem fehlerhaften Abgang ausgeschaltet lassen, um zumindest alle anderen Verbraucher im Fotostudio fehlerfrei weiter betreiben zu können. Bei diesem Versuch hat man festgestellt, dass der RCD selbst dann auslöst, wenn kein einziger Sicherungsautomat eingeschaltet ist. Nun war die Elektrofachkraft mit ihrer Erfahrung am Ende. Was könnte jetzt noch den RCD zum Auslösen bringen?

🌐 Alle Verbraucher sind über die Sicherungsautomaten vom Netz getrennt.

🌐 Alle Kabel und alle Verbraucher haben die Isolationsprüfung bestanden und können als Fehlerquelle ausgeschlossen werden.

Weitere Untersuchungen

Im Erdgeschoss dieses Gebäudes befindet sich allerdings eine andere Firma, welche frequenzumrichtergeregelte Antriebe einsetzt für die Produktion und Bearbeitung von Metallteilen. Um den Grund für die Fehlauslösung des Fehlerstrom-Schutzschalters zu finden, wurde nun folgender Messaufbau installiert und in Detektivarbeit mit hochwertiger Messtechnik nach dem Fehler gesucht.

Wie in Bild 1 zu erkennen ist, wurde ein Power Quality Netzanalysator PQ-Box 300 von A. Eberle in der Unterverteilung des Fotostudios installiert. Die schwarzen Stromzangen für die Leiter L1, L2, L3 und N erfassen die Ströme über unseren RCD, während eine fünfte Stromzange (rot) den Differenzstrom zusätzlich erfasst. Dieser ist der Summenstrom der drei Außenleiterströme und des Neutralleiters und somit genau der Strom, der auch vom RCD für ein Auslösen bewertet wird. Zu jedem Zeitpunkt muss die Summe der Momentanwerte der Ströme L1, L2, L3, N den Wert 0 ergeben. Der sich ergebende Differenzstrom, erfasst über die fünfte Stromzange, entspricht somit dem Strom, der über die Erde als Fehlerstrom oder Ableitstrom fließt.

PQ-Box 300 Prüfaufbau
Bild 1: Anschluss der Stromzangen

Die Spannungen wurden, wie ebenfalls in Bild 1 zu erkennen ist, über Magnetabgriffe am Ausgang des RCDs angeschlossen. Diese Magnetabgriffe sind recht bequem und schnell in einer Installation anzubringen, da die Schrauben von Sicherungsautomaten und Schutzschaltern immer ferromagnetisch sind und somit hier Magnetabgriffe sehr einfach und in wenigen Sekunden adaptiert werden können.

Im Netzanalysator wurde nun die Triggerschwelle für schnelle Störschriebe auf die Spannung eingestellt. Sobald die Netzspannung durch das Abschalten des RCDs auf 0 V einbricht, soll der Netzanalysator PQ-Box 300 eine schnelle Aufzeichnung aller Abtastwerte mit 400 kHz starten.

In der Regel erfassen Netzanalysatoren eine größere Nachgeschichte infolge eines Ereignisses. In diesem Fall bekommt das Messgerät seinen Triggerimpuls aber erst am Ende der Störung und es ist hier eine möglichst lange Vorgeschichte interessant. Hochwertige Netzanalysatoren halten hierfür in einem schnellen Arbeitsspeicher (RAM) durchgehend Oszilloskopbilder über einen längeren Zeitraum vor, auch wenn kein eingestellter Grenzwert überschritten wird. In Bild 2 wird eines dieser Ereignisse dargestellt.

A. Eberle Software AE-Toolbox
Abbildung 2: Oszilloskopbild Spannungen und Ströme über 4000 ms

PQ-Box 300 im Einsatz
Bild 3: Die PQ-Box 300 im Messeinsatz

Analyse der Messdaten und Erklärung des Problems

Aus den Abtastwerten kurz vor dem Auslösen des RCDs kann über eine FFT-Analyse (Fast Fourier Transformation) das Frequenzspektrum berechnet werden. In der Regel kann das Messgerät das Spektrum nur bis maximal der halben Abtastrate berechnen. In Falle der PQ-Box 300 ist dies bis 170 kHz möglich. In der Frequenzanalyse der während der Störung aufgezeichneten Spannungen und Ströme konnten vor dem Auslösen des RCDs Frequenzen bei 8 kHz, 16 kHz, 24 kHz und 32 kHz detektiert werden (Bild 4). Nun machte man sich auf die Suche nach dem Verursacher. Diese Frequenzen werden von keinem Verbraucher im Fotostudio erzeugt und müssen somit von außen in diese Elektroverteilung eingebracht werden. Wie gesagt, löste der RCD auch aus, obwohl wesentlich seltener, wenn alle Sicherungsautomaten ausgeschaltet wurden.

Hinweis

Achtung, die meisten Zangenamperemeter sowie einfache Netzanalysatoren messen meist nur bis 2 kHz – somit wären die hier aufgetretenen Ableitströme nicht messbar und würden daher häufig nicht auffallen.

FFT-Spektrum PQ-Box
Bild 4: FFT-Analyse der Ströme von DC bis 20 kHz

Verursacher gefunden:

Frequenzumrichtergeregelter Antrieb

Die hohen Frequenzen von 8 kHz und deren Vielfache können nur lokal in diesem Niederspannungsnetz erzeugt werden. Es ist nicht davon auszugehen, dass diese hohen Frequenzen über einen Transformator übertragen werden. Somit war die Suche auf dieses Gebäude, welches einen eigenen 400 kVA Transformator besitzt, begrenzt. Die Fertigungsanlagen in anderen Gebäuden mit einem eigenem Transformator wurden erstmal ausgeschlossen. Im Erdgeschoss dieses Gebäudes befindet sich eine Fertigungsanlage mit einigen umrichtergeregelten Antrieben. Von diesen Anlagen werden die hohen Frequenzen in das Netz über den Anlagenstrom emittiert. Da der Transformator (XL) dieses Gebäudes für hohe Frequenzen eine hohe Impedanz aufweist (siehe die allgemein bekannte Formel 1), suchen sich diese eingebrachten Störsignale von 8 kHz und deren Vielfache in der Regel andere Verbraucher in der Nähe mit einer niedrigen Impedanz. Dies sind vor allem Geräte mit Kondensatoren im Eingang, wie z. B. Schaltnetzteile, wie aus der ebenfalls allgemein bekannten, aber oft nicht erinnerten Formel 2 deutlich hervorgeht (die Imaginäranteile lassen wir zur Vereinfachung hier mal weg):

Berechnung der Blindwiderstände

An den Formeln (1 und 2) erkennt man recht deutlich, dass Induktivitäten für hohe Frequenzen einen hohen Blindwiderstand und Kondensatoren einen sehr niedrigen Blindwiderstand erhalten. Entsprechend verhält es sich dann mit der Impedanz als komplexem Widerstand. Eine Störpegelausbreitung von höherfrequenten Störungen (auch Supraharmonische genannt) wird maßgeblich durch alle im Gebäude installierten Verbraucher bestimmt.

Erklärung des Phänomens

Die umrichtergeregelten Antriebe im Erdgeschoss erzeugten Netzrückwirkungen in den Frequenzbereichen 8 kHz und deren Vielfache. Diese Pegel werden kaum in Richtung unseres 400 kVA Transformators fließen, da er für hohe Frequenzen eine hohe Impedanz aufweist (siehe Formel 1; Bild 5). Diese Taktfrequenzen suchen sich andere Verbraucher in der Umgebung, welche für diese Frequenzen eine niedrige Netzimpedanz aufweisen. In diesem Fall fließt ein Strom über die Außen- und den Neutralleiter in Richtung Verbraucher.

Eigenheim Supraharmonische
Bild 5: Schema zur Ausbreitung von Supraharmonischen in diesem Gebäude

Die Netzfilter in den diversen Verbrauchern des Fotostudios erzeugen Ableitströme gegen Erde. Solche EMV-Filter müssen alle Verbraucher besitzen, schon allein, um das CE-Zeichen zu erlangen. Da Schaltnetzteile selbst auch leitungsgebundene Störungen produzieren, müssen diese Geräte mit Filtermaßnahmen beschaltet werden. In der Regel geschieht dies mit einfachen passiven Bauelementen wie stromkompensierten Netzdrosseln und X-/Y-Kondensatoren (Bild 6).

A. Eberle Netzfilter
Bild 6: Beispiel von X- und Y-Kondensatoren im Eingang eines Schaltnetzteiles

Da beim Anschluss von einphasigen Verbrauchern über eine Schuko-Steckdose nicht klar festgelegt ist, welche Position der Außenleiter und der Neutralleiter einnimmt, findet man auf beiden Leitern Filter: Außenleiter gegen Erde sowie Neutralleiter gegen Erde. Die resultierenden Ableitströme sind überwiegend kapazitiv, während Fehlerströme einen hohen ohmschen Anteil besitzen.

Ein RCD kann nicht zwischen einem Fehlerstrom und einem Ableitstrom unterscheiden. Er muss auslösen, sobald seine Stromschwelle überschritten wird. Diese Auslöseschwelle liegt bei einem 30-mA-RCD bei minimal 15 mA bis spätestens 30 mA. Ein RCD muss zwischen 0,5 x In bis 1 x In auslösen, das ist seine Aufgabe.

Über die große Anzahl der im Fotostudio befindlichen Verbrauchsgeräte wie Beleuchtungseinrichtungen, Kameras, Bildschirme, PC und Server kommt man hier in Summe über den Auslösestrom von 15 mA bzw. 30 mA des RCD. Der für den Personenschutz vorgeschriebene Auslösewert beträgt 30 mA. Dieser Wert darf nicht erhöht werden. Das bedeutet, dieser dürfte in unserem Fall nicht durch einen 300 mA Typ ersetzt werden.

Der RCD sieht nun durch die Summe der Ableitströme aller Verbraucher einen Differenzstrom. Dieser fließt über die aktiven Leiter zur Erde oder im Falle, wenn alle Sicherungsautomaten ausgeschaltet sind, zwischen dem Neutralleiter und der Erde und löst somit den RCD aus. In einer Isolationsmessung fällt dieser Effekt nicht auf, da diese mit einer DC Spannung durchgeführt wird.

Lösung des Problems

Nun gibt es verschiedene Lösungsmöglichkeiten für dieses Problem:

🌐 Installation eines Netzfilters direkt vor die Unterverteilung des Fotostudios im 1. OG;

🌐 Installation eines Netzfilters am Verursacher der Netzrückwirkungen im Erdgeschoss;

🌐 Evtl. Austausch des RCDs durch einen geeigneten Typ für diese Netzbedingungen.

Es gibt heute eine Vielzahl von unterschiedlichen RCD-Typen für verschiedene Applikationen, wie z. B. AC, A, B, B+, F. Eine Lösung für unser Problem wäre der Tausch des RCDs in unserer Verteilung z. B. gegen einen Doepke Typ B SK. Dieser RCD ist wie folgt definiert: Allstromsensitiver Fehlerstromschutzschalter des Typs B für Elektroanlagen mit Frequenzumrichtern, mit höchster Verfügbarkeit und durchgängig definierter Auslöseschwelle auch bei hohen Fehlerstromfrequenzen bis 150 kHz. Bei dieser Art von RCD liegt der Auslösestrom für höhere Frequenzen über 30 mA für 50 Hz. Hohe Frequenzen sind für den Menschen nicht so gefährlich wie 50/60 Hz Ströme und somit darf hier ein höherer Auslösewert verwendet werden (siehe z. B. [1]). Da man in unserem Beispiel auch Störungen von anderen Geräten in diesem Gebäude vermeiden wollte, entschied man sich zum Einbau eines Netzfilters in die Zuleitung des verursachenden Betriebes im Erdgeschoss. Man eliminiert somit die hohen Taktfrequenzen direkt schon am Entstehungsort.

Fazit

Dass in Industrieanlagen mit Leistungselektronik mit höheren Ableitströmen zu rechnen ist und diese vermehrt Fehlerstromschutzschalter unnötigerweise zum Auslösen bringen können, ist meist bekannt.

Ein Auslösen von RCDs in anderen Firmen außerhalb dieser Elektroverteilung mit Leistungselektronik ist aber nicht immer so einfach zu erklären. Durch den Wandel in der Energietechnik bekommen wir immer häufiger im höherfrequenten Bereich von 2 kHz bis 150 kHz Netzrückwirkungen in unsere Energieversorgungsnetze, verursacht von umrichtergeregelten Antrieben oder Schaltnetzteilen. Diese höherfrequenten Rückwirkungen bewirken auch neue Störungen, welche man bisher so nicht kannte. Spannungsqualitätsnormen wie z. B. die IEC bzw. DIN EN 61000-2-2 [2] besitzen heute schon Grenzwerte für das öffentliche Niederspannungsnetz bis 150 kHz.

Um Störungen in diesen Frequenzbereichen zu erfassen, ist es wichtig, zu prüfen, ob das eingesetzte Messgerät oder auch die verwendeten Stromzangen diese Frequenzen überhaupt detektieren können. Jedes Messgerät und auch jede Stromzange besitzt einen limitierten Frequenzbereich, den es vor einer Messaufgabe zu überprüfen gilt.

Literatur

[1]
Allstromsensitive Fehlerstromschutzeinrichtungen (RCD Typ B)
Anwendungshinweise und technische Informationen (Handbuch Allstromfibel). Doepke Schaltgeräte: Oktober 2019.
Erhältlich unter: www.doepke.de/de/produkte/schuetzen/fehlerstromschutzschalter-rccb/

[2]
DIN EN 61000-2-2 (VDE 0839-2-2):2020-05 Elektromagnetische Verträglichkeit (EMV)
Teil 2-2: Umgebungsbedingungen – Verträglichkeitspegel für niederfrequente leitungsgeführte Störgrößen und Signalübertragung
in öffentlichen Niederspannungsnetzen.

Autor

Jürgen Blum, Produktmanager Power Quality Mobil bei A. Eberle GmbH & Co. KG

Hol Dir diesen Beitrag als PDF
SEG Electronics WIC 1 Schneller als Dein AirbagA. Eberle GmbH & Co. KG Wir regeln das.Parametrierung & Prüfung von Schutzsystemen Engineering AcademyPhoenix Contact NSE Das mehr an SchutzMegger Sverker 900Omicron Electronics Die Zukunft der Schutzprüfung
Erdschluss Mittelspannung
Omicron Prüfgerät Sekundärschutz
Prüfequipment für Schutzprüfungen
Klemmleiste mit Prüfsteckern
Siprotec Schutzgerät bei der Prüfung
Siemens Siprotec Kompaktgeräte
Stromwanlderprüfung an defekten Keramikklemmen
Sternpunkt 588 MVA Generator